Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Med Chem Lett ; 13(5): 812-818, 2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35586440

RESUMO

The toll-like receptors (TLRs) play key roles in activation of the innate immune system. Aberrant activation of TLR7 and TLR8 pathways can occur in the context of autoimmune disorders due to the elevated presence and recognition of self-RNA as activating ligands. Control of this unintended activation via inhibition of TLR7/8 signaling holds promise for the treatment of diseases such as psoriasis, arthritis, and lupus. Optimization of a 2-pyridinylindole series of compounds led to the identification of potent dual inhibitors of TLR7 and TLR8, which demonstrated good selectivity against TLR9 and other family members. The in vitro characterization and in vivo evaluation in rodent pharmacokinetic/pharmacodynamic and efficacy studies of BMS-905 is detailed, along with structural information obtained through X-ray cocrystallographic studies.

2.
ACS Med Chem Lett ; 11(9): 1751-1758, 2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32944143

RESUMO

The toll-like receptor (TLR) family is an evolutionarily conserved component of the innate immune system, responsible for the early detection of foreign or endogenous threat signals. In the context of autoimmunity, the unintended recognition of self-motifs as foreign promotes initiation or propagation of disease. Overactivation of TLR7 and TLR9 have been implicated as factors contributing to autoimmune disorders such as psoriasis, arthritis, and lupus. In our search for small molecule antagonists of TLR7/9, 7f was identified as possessing excellent on-target potency for human TLR7/9 as well as for TLR8, with selectivity against other representative TLR family members. Good pharmacokinetic properties and a relatively balanced potency against TLR7 and TLR9 in mouse systems (systems which lack functional TLR8) made this an excellent in vivo tool compound, and efficacy from oral dosing in preclinical models of autoimmune disease was demonstrated.

3.
Inorg Chem ; 45(15): 5752-9, 2006 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-16841978

RESUMO

The syntheses and electron paramagnetic resonance (EPR) spectral characterizations of porphyrins (1-3) substituted with two radical groups bound to trans-meso positions are described. One of these compounds, 3, has been studied by variable-temperature magnetic susceptibility and has been structurally characterized. Biradical porphyrin 3 is monoclinic, space group P2(1)/n, with a = 12.239(2) A, b = 17.819(3) A, c = 34.445(7) A, alpha = 90 degrees , beta = 97.466(3) degrees , gamma = 90 degrees , and Z = 2. The bis(nitroxide) porphyrins 1 and 2 exhibit fluid solution EPR spectra consistent with |J| >> |a|. No evidence was observed for conformational modulation of J by rotation about single bonds as shown by the lack of change of the EPR spectra as a function of temperature. The bis(semiquinone) porphyrin 3 exhibits frozen-solution EPR spectra with zero-field splitting and a Deltam(s) = 2 transition characteristic of a triplet state. The intensity of the Deltam(s) = 2 transition of 3 was measured as a function of temperature, and the data fit according to a singlet-triplet model to yield J(3,solution) = -75 cm(-1) (H = - 2Js1.s2). Polycrystalline samples of porphryin 3 were examined by variable-temperature magnetometry. The paramagnetic susceptibility data were fit using a modified Bleaney-Bowers equation to give J(3,solid) = -29 cm(-1) (H = - 2Js(1).s(2)). The antiferromagnetic J values are consistent with the pi topology of the porphyrin ring.


Assuntos
Química/métodos , Porfirinas/química , Dimerização , Espectroscopia de Ressonância de Spin Eletrônica , Elétrons , Magnetismo , Modelos Químicos , Modelos Moleculares , Conformação Molecular , Óxido Nítrico/química , Espectrofotometria , Temperatura , Zinco/química
4.
Inorg Chem ; 41(5): 1086-92, 2002 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-11874342

RESUMO

The tris-bidentate ligand 1,3,5-tris(5'-tert-butyl-3',4'-dihydroxyphenyl)benzene ((TBCat)(3)Ph) was synthesized. The reaction of this molecule in basic solution with two paramagnetic acceptors, i.e., a nickel(II)minus signtetraazamacrocyclic ligand complex (Ni(CTH)) (CTH = dl-5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane) and manganese(II)-hydrotris[3-(4'-cumenyl)-5-methylpyrazolyl]borate (Mn(Tp(Cum,Me))), yielded two complexes whose analytical formulas are consistent with those of trinuclear complexes. Spectroscopic and magnetic measurements suggest that these derivatives contain divalent metal ions coordinated to the tris(semiquinone) form of the ligand. Analysis of the magnetic data shows that the pi-connectivity of the ligand enforces ferromagnetic coupling between the three semiquinone units of the molecule, giving rise to complexes with S = 9/2 (M = Ni(II)) and S = 6 (M = Mn(II)) ground states. The coupling within the tris(semiquinone) unit is quite large (J = -26 cm(-1) for the nickel(II) derivative and J = -40 cm(-1) for the manganese(II) one, using the general exchange Hamiltonian H = sigma J(ij)S(i)S(j)), and it is of the same order of magnitude as that observed in an analogous series of bis(semiquinone) complexes that we recently reported.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...